Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 842153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300424

RESUMO

Deficiency in T cell-mediated adaptive immunity, such as low CD8+ T cell infiltration, inhibits the immune surveillance, promotes malignant transformation, and facilitates tumor growth. Microbiota dysbiosis diminishes the immune system and contributes to the occurrence of cancer. However, the impact of oral dysbiosis on the occurrence and molecular mechanisms of oropharyngeal cancer (OPC) remains largely unknown. In the current study, we used 4-nitroquinoline-1-oxide (4NQO) to mimic tobacco-related carcinogenesis to generate a murine OPC model and determine the role of microbiota changes in OPC tumorigenesis. Our results showed that the oral flora composition of mice was deregulated during the tumorigenesis of OPC. The abundance of Streptococcus, Veillonella, Muribacter, Rodentibacter, and Gemella was increased, whereas the dominant genus Lactobacillus was gradually decreased with disease progression. We further demonstrated that infiltration of CD8+ T lymphocytes was markedly reduced due to the reduction of Lactobacillus. Supplementation of Lactobacillus increased the infiltration of CD8+ T cells, promoted the expression of IFN-γ and granzyme B, and lessened the OPC progression. Analyzing the metabolites of the Lactobacillus, we demonstrated that Lactobacillus enhanced the anti-tumor immune response by producing acetate in OPC development. Administration of acetate to mice could increase the expression of IFN-γ and IFN-γ-inducible chemokines in tumor tissues by activating GPR43 to promote the infiltration of CD8+ T lymphocytes and substantially delay the development of OPC. Together, our data suggest that dysbiosis of oral microbiota promotes the tumorigenesis of OPC through downregulation of cytotoxic T lymphocytes. Lactobacillus and its metabolite acetate improve the tumor microenvironment, which could be applied in the treatment of OPC.

2.
J Cell Physiol ; 237(3): 1845-1856, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34881818

RESUMO

Abdominal irradiation (IR) may destroy the intestinal mucosal barrier, leading to severe intestinal infection and multiple organ dysfunction syndromes. The role of intestinal microbiota in the development of IR-induced intestinal injury remains largely unknown. Herein, we reported that abdominal IR altered the composition of the microbiota and reduced the abundance and diversity of the gut microbiome. Alterations of bacteria, in particular reduction of Lactobacillus, played a critical role in IR-induced intestinal injury. Fecal microbiota transplant (FMT) from normal mice or administration of Lactobacillus plantarum to intestinal microbiota-eliminated mice substantially reduced IR-induced intestinal damage and prevented mice from IR-induced death. We further characterized that L. plantarum activated the farnesoid X receptor (FXR) - fibroblast growth factor 15 (FGF15) signaling in intestinal epithelial cells and hence promoted DNA-damage repair. Application of GW4064, an activator of FXR, to microbiota eliminated mice markedly mitigated IR-induced intestinal damage, reduced intestinal epithelial cell death and promoted the survival of IR mice. In contrast, suppression of FXR with Gly-ß-MCA, a bile acid and an intestine-selective and high-affinity FXR inhibitor, abrogated L. Plantarum-mediated protection on the ileum of IR mice. Taken together, our findings not only provide new insights into the role of intestinal flora in radiation-induced intestinal injury but also shed new light on the application of probiotics for the protection of radiation-damaged individuals.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Animais , Ácidos e Sais Biliares , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...